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Abstract. The Green function of a square tight-binding model in magnetic fields is expressed
by means of continued fractions. For rational fields, the expression is reduced to a more useful
one. The Green function expressing the out-going wave is numerically computed at arbitrary
sites for the first time. It is found that the absolute value of the Green function takes maximum
values on the reciprocal lattice of the magnetic Brillouin zone.

1. Introduction

Physics of two-dimensional (2D) electrons in a periodic lattice has been of special interest,
since the microfabrication technology of the semi-conductor became available to prepare
electron systems with large period in superlattices. In these systems, the band width is
narrow and the effects of magnetic fields and periodic potentials are emphasized. The
magnetoresistance has been measured in the samples with artificial periodicity and many
interesting phenomena have been discovered. The realization of the Hofstadter-type energy
spectrum is one of the typical examples [1–3].

Such systems are frequently modelled by means of tight-binding approximation. We
consider tight-binding electrons with an isotropic nearest-neighbour hopping in a square
lattice subjected to a uniform magnetic field applied perpendicularly. In the Landau gauge
with the lattice constant chosen as the unit of length, the wavefunctionϕ(n) at a lattice
point n = (nx, ny) satisfies [4]

2εϕ(n) =
4∑
i=1

Tn+ai ,nϕ(n+ ai )

Tn+ai ,n = exp[−i2πα (0, nx) · ai ].
(1)

Hereai (i = 1∼ 4) represents a translation vector to the nearest-neighbour lattice points:

a1 = (1, 0) = −a3 a2 = (0, 1) = −a4

andα = 8/80 is the ratio of the magnetic flux through a unit cell8 = B to the magnetic
flux quantum80 = h/e.

Equation (1) has been investigated extensively since the pioneering works of Peierls
[5]. A number of theoretical studies have been carried out in many different physical
contexts, ranging from the quantum Hall effect [6] to quasiperiodic systems (for a review,
see, for example, [7]). Its topological character has been revealed both for periodic boundary
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conditions [6] and for systems with edges [8]. Recently, Hatsugaiet al [9] derived several
analytical results for the weak-field limit and for the incommensurate golden-mean flux, by
following the highly innovative Bethe ansatz approach proposed by Wiegmann and Zabrodin
[10] using quantum group techniques. In the transport problems, the numerical technique
with Green functions, which is conventionally called the recursive Green function method,
has been widely used by many authors as a practical tool to simulate quantum transport in
a variety of structures [11, 12]. The key of the method is to calculate the Green functions
in a given system. Once the one-electron Green functions are known, it is possible to
use them for a variety of purposes. One may compute the amplitudes for scattering, the
density of states, electric current and conductivity [13]. The Green function, however, is
proper to the given finite system. The retarded and advanced Green functions in infinite
2D space in perpendicular uniform magnetic fields have never been obtained except the
diagonal element, that is, the density of states [14, 15].

One method of computing the Green functionG(n,n′; ε, α) for equation (1) in 2D
infinite system is the straightforward expansion in eigenfunctions which was used by
Takahashiet al [16], for example, in order to obtain the Hall and longitudinal conductivities,
that is, current–current correlation functions. It requires the normalized eigenfunctions
belonging to all subbands as functions of the coordinates and a wavevector. Whenα is
rational, i.e.α = p/q with mutual prime integersp andq, q kinds of the eigenfunctions
can be obtained analytically, but that is not trivial and is inconvenient. Whenα is irrational,
the eigenfunctions in infinite space cannot be calculated even numerically.

The purpose of the present paper is to derive a convenient expression of the Green
function G(n,n′; ε, α) in a 2D infinite system and to numerically compute the one
expressing the out-going wave at arbitrary sites for the first time. This, in principle, allows
us to obtain the Green function numerically for any values ofα.

The results obtained here propose the further interest of analytical and numerical study of
themselves, and the Green function enables us to investigate the behaviour of tight-binding
electrons in infinite 2D space in perpendicular uniform magnetic fields as well. For example,
we can treat the scattering problems of tight-binding electrons in uniform magnetic fields
by means of the Lippmann–Schwinger equation [17]. Further, the Kirchhoff–Helmholtz
formula which were modified for tight-binding electrons in magnetic fields by Kawamura
et al [18] becomes applicable exactly, although in [18] the semiclassical Green function
was employed. Such a method corresponds to the boundary element method for continuous
systems [19]. By using it, we can evaluate wavefunctions of tight-binding electrons confined
with an arbitrary-shaped boundary [20].

In the next section, we will examine symmetry properties of the Green function, which
will be helpful to save a numerical task greatly in obtaining the Green function. Especially,
the translational symmetry of the Schrödinger equation (1) is broken by the presence of the
vector potential, so thatG(n,n′; ε, α) depends onn andn′ separately. This feature is very
serious, making it necessary to calculate the Green function for all combinations ofn andn′,
not simply ofn−n′ as in the usual case. Therefore, we will transform the Green function
to a convenient form in which translational symmetry can be used. The transformed Green
function will be expressed in terms of continued fractions in section 3. For rational magnetic
fields, the expression will be further reduced analytically. The condition of the out-going
wave will be derived. Numerical calculation of the Green function will be presented in
section 4. The final section will be devoted to a summary and discussion.
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2. Definition and symmetries of the Green function

The Green functionG(n,n′; ε, α) for (1) is defined by the equation

4∑
i=1

Tn+ai ,nG(n+ ai ,n′; ε, α) = 2εG(n,n′; ε, α)− δn,n′ . (2)

From this equation, several kinds of symmetries with respect to the energyε, the coordinate
n and the magnetic fieldα are clarified. As for the energy, we can show that the following
relation, analogous to the case in the absence of magnetic fields, holds;

G(n,n′; −ε + iδ, α) = (−1)ξ+η+1G∗(n,n′; ε + iδ,−α) (3)

where we defineξ ≡ nx − n′x andη ≡ ny − n′y and an infinitely small imaginary part of
energyδ(> 0) is introduced in order to consider the out-going wave.

From the geometrical symmetry, we find

G(±(nx,−ny),±(n′x,−n′y); ε,−α) = G(n,n′; ε, α) (4)

and

G(n,n′; ε, α) = G(−n,−n′; ε, α). (5)

Although a kind of geometrical symmetry is held in the classical sense, the presence of a
phase factor breaks it quantum mechanically as

G(n,n′; ε, α) = exp[i2πα(nxny − n′xn′y)]G((ny, nx), (n′y, n′x); ε,−α)
= exp[i2πα(nxny − n′xn′y)]G((−ny, nx), (−n′y, n′x); ε, α). (6)

In our system, in addition, the magnetic field spoils the translational symmetry.
However, it is known that the Green function can be expressed exactly by the
product between an exponential factor which breaks the translational symmetry and the
translationally symmetric function [21] as

G(n,n′; ε, α) = exp[i2παn′x(ny − n′y)]G0(ξ, η; ε, α). (7)

Substituting (7) into (2), we see thatG0(ξ, η; ε, α) obeys the translationally invariant
equation:

G0(ξ + 1, η)+G0(ξ − 1, η)+ e−i2παξG0(ξ, η + 1)+ ei2παξG0(ξ, η − 1)

= 2εG0(ξ, η)− δξ,0δη,0 (8)

where the arguments,ε andα in G0 are dropped for brevity. Also in the following sections,
unessential arguments in the quantities frequently used will be suitably dropped.

Equations (3)–(6) show that if the Green function is calculated only for the restricted
region ofε > 0, α > 0, ξ > 0 andη > 0, it can be obtained for the whole region ofε, α
and(ξ, η).

3. Analytical expressions

Wheng(ξ, ky) is defined by

G0(ξ, η; ε, α) = 1

2π

∫ π

−π
eikyηg(ξ, ky) dky (9)

substitution of (9) into (8) yields the one-dimensional (1D) difference equations;

g(ξ + 1, ky)+ g(ξ − 1, ky)− 2βξ (ky, ε)g(ξ, ky) = −δξ,0 (10)
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with βξ (ky, ε) ≡ ε − cos(ky − 2παξ).
If we introduce the quantity

Bξ(ky, ε) = g(ξ + 1, ky)

g(ξ, ky)
(11)

it can be written by a continued fraction as [22, 23]

Bξ(ky, ε) =


2βξ (ky, ε)− 1

Bξ−1(ky, ε)
(ξ < 0)

1

2βξ+1(ky, ε)− Bξ+1(ky, ε)
(ξ > 0).

(12)

UsingBξ , we can expressg(ξ, ky) for an arbitrary value ofξ by continued fractions. The
result is

for ξ = 0 g(0, ky) = 1

2β0(ky, ε)− B0(ky, ε)− 1
B−1(ky ,ε)

(13)

for ξ > 0 g(ξ, ky) = g(ξ)

g(ξ − 1)

g(ξ − 1)

g(ξ − 2)
· · · g(2)

g(1)

g(1)

g(0)
g(0, ky)

=
( ξ−1∏
i=0

Bi(ky, ε)

)
g(0, ky) (14)

for ξ < 0 g(ξ, ky) =
( −1∏
i=ξ

1

Bi(ky, ε)

)
g(0, ky). (15)

Substituting these equations into (9) and (7), we obtain the continued fraction expansion
of the Green function. It is well known that a continued fraction expansion is a powerful
method of obtaining density of states [24].

It is too difficult to analytically discuss the Green function for arbitraryα, so hereafter
we confine ourselves to the case of rationalα.

We can writeα = p/q, wherep andq are relative prime integers. Using the periodicity
βξ+q(ky, ε) = ε − cos[ky − 2π(ξ + q)p/q] = βξ (ky, ε), we have

Bξ+q(ky, ε) = Bξ(ky, ε). (16)

Then, equations (14) and (15) are reduced to

g(ξ, ky) = r [ξ/q]
q (ky, ε)

(mod(ξ,q)−1∏
i=0

Bi(ky, ε)

)
g(0, ky) (17)

rq(ky, ε) ≡
q−1∏
i=0

Bi(ky, ε) (18)

where the operator [ξ/q] means Gauss symbol, that is, the maximum integer not more
than the value ofξ/q and mod(ξ, q) is defined asξ − q[ξ/q]. The second factor on the
right-hand side of (17) is taken as unity when the upper limit of the product mod(ξ, q)− 1
is negative.

Here, let us derive a useful expression ofrq(ky, ε). Equation (10) can be written in a
matrix form as(

g(ξ + 1, ky)
g(ξ, ky)

)
=
(

2βξ (ky, ε) −1
1 0

)(
g(ξ, ky)

g(ξ − 1, ky)

)
(19)
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except forξ = 0. By defining

Tq(ξ) ≡
q−1∏
i=0

(
2βξ+i (ky, ε) −1

1 0

)
(20)

we have (
g(ξ + q, ky)

g(ξ + q − 1, ky)

)
= Tq(ξ)

(
g(ξ, ky)

g(ξ − 1, ky)

)
. (21)

On the other hand, equation (17) leads to

g(ξ + q, ky) = rq(ky, ε)g(ξ, ky). (22)

The combination of (21) and (22) then yields

Tq(ξ)

(
g(ξ)

g(ξ − 1)

)
= rq(ky, ε)

(
g(ξ)

g(ξ − 1)

)
(23)

that is,rq(ky, ε) is given as eigenvalues of the matrixTq(ξ). Sincerq(ky, ε) is independent
of ξ , it is sufficient to considerTq(1).

Let us introduce the four quantitiesaq , bq , cq anddq for the matrix elements ofTq(1);(
aq bq
cq dq

)
≡ Tq(1) =

q∏
i=1

(
2βi(ky, ε) −1

1 0

)
. (24)

Because of the relation

aqdq − bqcq = detTq(1) = 1 (25)

the eigenvalues ofTq(1) are written as

r±q (ky, ε) = 1q(ky, ε)±
√
12
q(ky, ε)− 1 (26)

= exp(±i cos−11q(ky, ε)) (27)

with 1q(ky, ε) defined as

1q(ky, ε) = (aq + dq)/2= 1
2 Tr Tq(1). (28)

The problem is thus reduced to the calculation ofaq , bq , cq anddq .
From (24), we have

Tn(1) =
(

2βn(ky, ε) −1
1 0

)
Tn−1(1)

=
(

2βnan−1− cn−1 2βnbn−1− dn−1

an−1 bn−1

)
=
(
an bn
cn dn

)
and

T1(1) =
(

2β1(ky, ε) −1
1 0

)
=
(
a1 b1

c1 d1

)
.

Therefore,aq , bq , cq anddq are given by the following recursion relations;

an = 2βn(ky, ε)an−1− an−2(n > 2) a1 = 2β1(ky, ε) a0 = 1 (29)

bn = 2βn(ky, ε)bn−1− bn−2(n > 2) b1 = −1 b0 = 0 (30)

cn = an−1 (31)

dn = bn−1. (32)
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The quantityg(ξ, ky) can also be expressed in terms of the sequences{an} and{bn} as
shown in the following.

From the definition ofrq(ky, ε);(
aq − r±q bq
cq dq − r±q

)(
g(1, ky)
g(0, ky)

)
=
(

0
0

)
and the definition ofB0(ky, ε), (11), we obtain

B±0 (ky, ε) =
g(1, ky)

g(0, ky)
= bq

r±q − aq
.

Equations (28), (25), (31) and (32) yield

B±0 (ky, ε) =
bq(r

∓
q − aq)

−aqbq−1+ aqbq−1− bqaq−1

= aq − r∓q
aq−1

= aq − r∓q a0

aq−1− r∓q a−1
(33)

where we definea−1 ≡ 0.
Using the relationB0(ky, ε) = 2β0(ky, ε)− 1/B−1(ky, ε) given by (12), the physically

meaningful solutiong±(0, ky) defined by (13) is transformed as follows

g±(0, ky) = 1

2βq(ky, ε)− B0(ky, ε)− 1
B−1(ky ,ε)

= 1

B±0 (ky, ε)− B∓0 (ky, ε)

= ∓aq−1− r∓q a−1

2
√
12
q − 1

= ∓ aq−1− r∓q a−1

2i sin(cos−11q)
. (34)

Further, by means of induction, we obtain from equations (12), (16) and (29)

B±ξ (ky, ε) =
aq+ξ − r∓q aξ

aq+ξ−1− r∓q aξ−1
. (35)

So that equation (14) can be written as

g±(ξ, ky) = ∓aq+mod(ξ,q)−1− exp(∓i cos−11q)amod(ξ,q)−1

2i sin(cos−11q)
e±i[ξ/q] cos−11q . (36)

Therefore, equations (9) and (17) are combined to give

G0(ξ, η; ε, α) = ∓
∫ π

−π

dky
2π

eikyη exp(±i[ξ/q] cos−11q)

×aq+mod(ξ,q)−1− exp(∓i cos−11q)amod(ξ,q)−1

2i sin(cos−11q)
. (37)

It can be rewritten by means of 2D Fourier transform as

G0(ξ, η; ε + iδ, α) = q

2

∫ ∫ π

−π

dk

(2π)2
eik·ξ aq+mod(ξ,q)−1− e−ikxqamod(ξ,q)−1

1q(ky, ε)− coskxq ± iδ ∂1q
∂ε

e−ikx mod(ξ,q) (38)
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Table 1. 1q(ky, ε) and∂1q/∂ε for several values ofα.

α 1q(ky, ε)
∂1q
∂ε

0 − cosky + ε 1
1
2 − cos 2ky + 2ε2 − 2 4ε
1
3 − cos 3ky + 4ε3 − 6ε 6(2ε2 − 1)
1
4 − cos 4ky + 8ε4 − 16ε2 + 2 32ε(ε2 − 1)
1
5 − cos 5ky + 16ε5 − 40ε3 + 5(7−√5)

2 ε 5
(

16ε4 − 24ε2 + 7−√5
2

)
2
5 − cos 5ky + 16ε5 − 40ε3 + 5(7+√5)

2 ε 5
(

16ε4 − 24ε2 + 7+√5
2

)

where in order to obtain the out-going wave the sign of the integrand is selected as

1q(ky, ε) > 1 − sign

1q(ky, ε) < −1 + sign

|1q(ky, ε)| 6 1


∂1q

∂ε
> 0 −sign

∂1q

∂ε
< 0 +sign.

(39)

Here,k = (kx, ky) andξ = (ξ, η) are defined. It is confirmed that (37) is reduced to (38)
by performing a contour integral along a unit circle|z| = 1 with z = exp(ikxq).

For several values ofα, the explicit expressions for1q and∂1q/∂ε are given in table 1.
It shows that1q(ky, ε) is written as

1q(ky, ε) = − coskyq + 1+1q(ky = 0, ε). (40)

The derivative∂1q/∂ε is, then, a function of onlyε. A different branch to be chosen
according to the value of∂1q/∂ε is a characteristic feature in the presence of a magnetic
field, because∂1q/∂ε = 1 whenα = 0. This peculiarity is caused by the fact that the band
structure consists ofq subbands. Note that if there is a single band,∂1q/∂ε is a constant
independent ofε.

The equation

1q(ky, ε)− coskxq = 0 (41)

which determines the poles of the integrand, just gives the dispersion relation derived by
Chambers [25]. With (40), the dispersion relation (41) now reads

1q(0, ε)+ 1= coskxq + coskyq. (42)

The unit cell ink-space, the magnetic first Brillouin zone, is smaller than the Brillouin zone
by a factor ofq in each direction normal to the field. Because1q(0, ε) is a polynomial of
degreeq of the energyε, equation (41) is expressed as

1q(ky, ε)− coskxq =
q∏

m=1

[ε − εm(kx, ky)] = 0 (43)

where εm(kx, ky) is a dispersion of themth Landau subband. Thus, the band structure
consists ofq subbands. The centres of the subbands are given by coskxq+coskyq = 0, that
is,1q(0, ε)+1= 0, while the edges of subbands are determined by| coskxq+coskyq| = 2
or |1q(0, ε)+ 1| = 2.
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Figure 1. Demonstration of the density of states. The values ofα in (a) are 0, (b) 1
2 , (c) 1

3 ,

(d) 1
4 , (e) 1

5 and (f ) 2
5 .

4. Numerical calculation

4.1. Density of states

Whenα is rational, the density of states (DOS)ρ(ε) in infinite 2D space can be computed
exactly, since the imaginary part ofG(0, 0; ε, α) is related to DOS as follows

− ImG(0, 0; ε, α) = q

2
π

∫ ∫ π

−π

dk

(2π)2
δ(1q(ky, ε)− cosqkx)

= q

2
π

∫ ∫ π

−π

dk

(2π)2
∑
m

δ(ε − εm(kx, ky))∣∣∣ ∂1q∂ε ∣∣∣
= qπ

2
∣∣∣ ∂1q∂ε ∣∣∣ρ(ε). (44)

The imaginary part of the Green function for several values ofα is plotted in figure 1.
They correspond to the DOS of the energy spectrum obtained by Hofstadter [4].

His statement that bands form hierarchically organized cluster-like fractal structures is
clearly demonstrated in the calculated DOS. Namely, DOS of the subband located at the
centre of figures 1(a), (c) and (e) are similar, DOS of the two centre subbands in figure 1(d)
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Figure 2. The density plot of the Green function in the absence of a magnetic field for energy
(a) ε = 0.01 and (b) ε = 1.9, where black and white represents minimum and maximum values,
respectively.

are similar to that of figure 1(b) and so are the central three subbands in figures 1(e) and
(c). He conjectured that onlyq − 1 bands occurred for evenq, because the two central
bands touch in the middle pointε = 0. We can indeed confirm this phenomenon, since the
DOS vanished just atε = 0 for both figures 1(b) and (d).

The divergence of DOS in the centre of subbands reflects 1D motion as DOS of free
electrons in 1D space diverges in the limitε→ 0 like 1/

√
ε.

4.2. Space variation of the Green function

The density plot of|G(n,n′; ε, α = 0)| is presented in figure 2, near the band centre
ε = 0.01 in (a) and near a band edgeε = 1.99 in (b). Near the band edge,
|G(n,n′; ε, α = 0)| is smooth, while near the band centre it shows a checkered pattern as
it takes maximum value whenξ + η is even and minimum whenξ + η is odd. Also the
anisotropy of group velocity is well reflected in the profile of|G(n,n′; ε, α = 0)|. We can
expect such properties in the presence of a magnetic field as discussed below.

In contrast to the Green functionG(n,n′; ε, α), the quantity|G(n,n′; ε, α)| can be
written as a function of the relative coordinate(ξ, η). The density plots of|G(n,n′; ε, α)|
for α = 1

2 are presented in figure 3 for (a) ε = 0.5, (b) 0.9999 and (c) 1.4. The Green
function near an edge of a subband (figure 3(c)) is isotropic as well as figure 2(b) for α = 0,
ε = 1.9, whereas figures 3(a) and (b) show anisotropy. In particular, the wave favourably
propagates in the diagonal directions of the lattice near the centre of subbands even for
α = 1

2 due to anisotropy of the group velocity. That reflects the anisotropy of the group
velocity. In fact, by differentiating both sides of (42) byk, the group velocity is obtained as

v = −q (sinkxq, sinkyq)
∂1q(0,ε)

∂ε

∣∣∣∣∣
1q(0,ε)+1=coskxq+coskyq.

(45)
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Figure 3. The density plot of|G0(ξ, η;α = 1
2)| for energy (a) ε = 0.5, (b) ε = 0.9999 and (c)

ε = 1.4.

When energy of electrons lies at the centre of subbands, equation (45) becomes

v = −q sinkxq(1,±1)
∂1q(0,ε)

∂ε

. (46)

It shows that electrons only propagate in four diagonal directions of the square lattice. This
fact reflects in the divergence of DOS in the centre of subbands. On the other hand, when
energy lies near an edge of subbands withkx, ky ∼ 0, equation (45) yields

|v|2 = 2q2 1−1q(0, ε)(
∂1q(0,ε)

∂ε

)2 . (47)

Since the right-hand side of (47) is independent ofk, isotropic propagation is realized.
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Figure 4. The density plot of|G0(ξ, η;α)| for (a) α = 1
5 , ε = 1.45 and (b) α = 2

5 , ε = 0.05.

Although|G(n,n′; ε, α = 0)| is smooth near the subband edge, as shown in figure 2(b),
|G(n,n′; ε, α = 1

2)| is not smooth even near the subband edges. From figures 3(a) and (c),
we can see that|G(n,n′; ε, α = 1

2)| has maximum values at the lattice points whereξ andη
are even simultaneously. In figure 3(b), it has maximum values when(ξ+η)/2 is even. The
oscillation observed in figure 3(b) seems superposition of two kinds of oscillation. The one
appears near the centre of subbands as appeared in figure 2(a). The other is characteristic
for α = 1

2 as appeared in figures 3(a) and (c). In figure 4, |G(n,n′; ε, α)| is plotted in
(a) for α = 1

5, ε = 1.45 and in (b) for α = 2
5, ε = 0.05. Both figures 4(a) and (b) show

complicated behaviours and have maximum values when bothξ andη are simultaneously
multiples of 5. From these facts, we guess that the maximum of|G(n,n′; ε, α)| occurs
on the lattice points of a square ‘magnetic superlattice’ [4] ofq lattice spacing on a side
for α = p/q. The ‘magnetic superlattice’ is the reciprocal lattice of the magnetic Brillouin
zone which is(1/q)2 of the Brillouin zone. The unit cell of the magnetic superlattice is the
smallest square cell that intercepts an integral number of flux quanta.

5. Summary and discussion

The square lattice Green function in magnetic fields has been expressed in terms of continued
fractions. For rational magnetic fields (α = p/q), the expression has been analytically
reduced to a tractable form in terms of the two sequences and the out-going boundary
condition has been applied for it. Its numerical calculation has been performed for several
values ofα. It is found that the Green function is isotropic near the subband edges, while
near the centres of subbands it shows a marked anisotropy reflecting that of the group
velocity. It has maximum value on the reciprocal lattice of the magnetic Brillouin zone.

However, some problems remain to be conquered. Although the Green function has
been calculated forq 6 5 numerically in this paper, the calculation for large values ofq

is very difficult. One of the reasons is that the out-going condition is too complicated to
solve. Another is that it is difficult to perform Fourier transform ofg(ξ, ky) numerically
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sinceg(ξ, ky) has at most 2q singular points inky space whenα = p/q. Of course, the
time consuming but steady calculations for each value ofα gives us values of the Green
function at arbitrary lattice points, but from a practical point of view, it is crucial to find
a more convenient method. The eigenfunction expansion method never improves such a
situation, since after analytical calculations, we will finally obtain an expression essentially
equivalent to (38).

In this paper, we have derived the condition of the out-going wave for the commensurate
cases. The reason is that the integrand of (37), that isg±(ξ, ky), essentially depends onξ
as exp(±i[ξ/q] cos−11q). For the incommensurate cases, however, the condition cannot
be determined, since we cannot know the dependence of the integrand onξ . This is a
very interesting and important problem. The results obtained here indicate an interesting
possibility in the further study of the square tight-binding Green function.

Acknowledgments

The author wishes to express his sincere thanks to Professor K Ohtaka for fruitful
discussions and critically reading the manuscript. He would especially like to thank
Professor K Kawamura for discussions, constant encouragement and his continual interest
in this work.

References

[1] Grehardts R R, Weiss D and von Klitzing K 1989Phys. Rev. Lett.62 1173
[2] Winkler R W, Kotthaus J P and Ploog K 1989Phys. Rev. Lett.62 1177
[3] Weiss D, Roukes M L, Menschig A, Grambow P, von Klitzing K and Weimann G 1991Phys. Rev. Lett.66

2790
[4] Hofstadter D R 1976Phys. Rev.B 14 2239
[5] Peierls R E 1933Z. Phys.80 763
[6] Thouless D J, Kohmoto M, Nightingale P and den Nijs M 1982Phys. Rev. Lett.49 405
[7] Hiramoto H and Kohmoto M 1992Int. J. Mod. Phys.B 6 281
[8] Hatsugai Y 1993Phys. Rev.B 48 11 851
[9] Hatsugai Y, Kohmoto M and Wu Y S 1994Phys. Rev. Lett.73 1134

[10] Wiegmann P B and Zabrodin A V 1994 Phys. Rev. Lett.72 1890
[11] Thouless D J and Kirkpatrick S 1981J. Phys. C: Solid State Phys.14 235
[12] MacKinnon A 1985Z. Phys.B 59 385
[13] Ando T 1991Phys. Rev.B 44 8017
[14] Wannier G H, Obermair G M and Ray R 1979Phys. Status Solidi93 337
[15] Schweitzer L, Kramer B and MacKinnon A 1984J. Phys. C: Solid State Phys.17 4111
[16] Takahashi M, Hatsugai Y and Kohmoto M 1996J. Phys. Soc. Japan65 529
[17] Schiff L I 1968 Quantum Mechanics(Auckland: McGraw-Hill) p 319
[18] Kawamura K, Ueta T and Sawano H 1992Japan. J. Appl. Phys.31 317
[19] Ueta T 1996Engineering Analysis with Boundary Elements17 69
[20] Ueta TEngineering Analysis with Boundary Elementssubmitted
[21] Ueta T 1992J. Phys. Soc. Japan61 4314
[22] Czycholl G and Kramer B 1980Z. Phys.B 39 193
[23] MacKinnon A 1980J. Phys. C: Solid State Phys.13 L1031
[24] Pettifor D G and Weaire D L (ed) 1985The Recursion Method and Its Applications(Berlin: Springer)
[25] Chambers W G 1965Phys. Rev.A 140 135


